Macroeconomic Risk and Idiosyncratic Risk-Taking Chen & Strebulaev Discussion AFA 2018

Loualiche – Minnesota

Research question

- Great paper: burgeoning field at the intersection of corporate finance and asset pricing
- Ambitious: authors are trying to answer a novel and hard question
- Polished ... almost too polished (the paper has been published since it was submitted)

Research question

Aggregate Risk and Corporate Decision

- Broad question: how do agency conflicts respond to changes in aggregate market conditions.
- Narrow question: how does risk-shifting respond to changes in aggregate market conditions.

Why this is important

- Broad new agenda in corporate finance if we acknowledge time varying discount rates
 - we need to revisit corporate theories usually based on static valuations
 - e.g. how do agency conflicts generally move with discount rates, does it matter at all?
- Implications for corporate finance and the macroeconomy
 - some classic trade-offs are not always operative
 - dampening or amplification of aggregate shocks through corporate financial decisions

This paper

This Paper:

- How does risk shifting varies with macro shocks
- Does it amplify risk in times of high risk premia?

Capturing the trade-off costs of risk-shifting

- Dynamic structural estimation of firm financing
- Estimate four "deep" risk shifting parameters
 - Cost of risk regime shift: η , ξ^+ , ξ^-
 - Increase in idiosyncratic risk ϵ

Implications

- Impact of idiosyncratic risk across firms: aggregate idiosyncratic risk high in bad times
- Link between idiosyncratic risk and expected returns

Roadmap

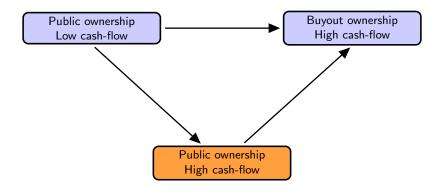
- Dynamics of risk shifting
- Estimation
- General view on aggregate market conditions and corporate finance decisions
- General equilibrium?

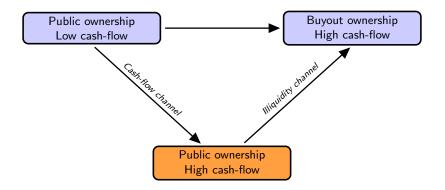
Refinancing Cycle

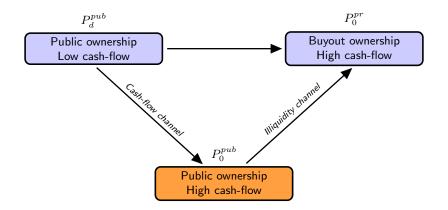
Regime of low idio risk Regime of high idio risk 1.4 Path 1 x 1.2 Path 3 X₀ Path 2 Cash flow X 0.8 X_r 0.6 Path 4 0.4 X_d 0.2 50 70 10 20 30 40 60 time

One Refinancing Cycle

Estimation


Reduced form model of risk shifting


- \blacksquare Three Main parameters: cost of risk-shifting $\eta,\,\xi^+$ and ξ^-
 - η value destroyed through risk-shifting
 - ▶ ξ^+ , ξ^- : upfront costs of changing regime
 - ϵ idiosyncratic volatility increment


Moments matching

- Matched moments:
 - cash-flow volatility process and interaction of two processes
 - leverage process
 - elasticity of cash-flow volatility to financial leverage
- cross-sectional dispersion in cash-flow volatility: risk shifting level
- first order auto-correlation: risk-shift on/off
- cash-volatility elasticity to financial leverage: risk-shift cost parameter

Corporate Finance Decisions and Aggregate Market Conditions

Haddad, Loualiche, & Plosser, JF 2017

Panel A: Volume								
	M&A					LBO / M&A		IPO
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
\hat{rp}_{OLS}	-0.054^{***} (0.0062)	-0.052*** (0.0065)	-0.054^{***} (0.0061)	-0.054^{***} (0.0078)	-0.052^{***} (0.0071)	-0.032^{**} (0.015)	-0.054^{***} (0.018)	0.0087 (0.026)
EBITDA Spread		0.058* (0.033)			0.033 (0.038)		0.14^{**} (0.070)	
HY Spread		0.027* (0.015)			0.0040 (0.025)		0.15^{**} (0.061)	
GZ Spread		0.00024 (0.047)			-0.015 (0.040)		0.13 (0.082)	
GDP Growth		()	-0.55 (2.44)		-0.82 (2.75)		13.9*** (3.96)	
CE Fund Discount			()	0.015^{*} (0.0083)	0.014 (0.0100)		0.010 (0.020)	
Sentiment				0.059 (0.081)	0.064 (0.073)		-0.12 (0.097)	
Observations R^2	$\begin{array}{c} 123 \\ 0.456 \end{array}$	$\begin{array}{c} 123 \\ 0.488 \end{array}$	$\begin{array}{c} 123 \\ 0.457 \end{array}$	$\begin{array}{c} 120 \\ 0.475 \end{array}$	$\begin{array}{c} 120 \\ 0.491 \end{array}$	$\begin{array}{c} 116 \\ 0.079 \end{array}$	$\begin{array}{c} 113 \\ 0.242 \end{array}$	$\begin{array}{c} 164 \\ 0.007 \end{array}$

General Equilibrium

Going further

- Clustering of risk shifting, amplification of risk into cash flows
- Implications for SDF, link to factor structure in idiosyncratic volatility
 - Alternative to some of the stories to rationalize Herskovic, Kelly, Lustig, & Van Nieuwerburgh
- Revisiting the cost of agency: private cost and social cost might different due to aggregation

Agency Conflicts

- Aggregate market conditions act as catalyzer of importance of agency conflicts.
- Synchronize firm actions, lead to amplification (or dampening) of PE costs
- Reevaluate the cost of agency conflicts accounting for aggregate effects

Conclusion