Risk Exposure to Investment Shocks: A New Approach Based on Investment Data (Garlappi & Song)

Erik Loualiche (Minnesota) May 2018, SFS Cavalcade

#### **Research question**

### What drives the Value Premium: Kogan & Papanikolaou

- Growth opportunities are exposed positively to investment shocks
  - IST or embodied technical change
- Growth firms are composed of growth opportunities
- If growth firms have lower returns then the price of risk for IST shocks is negative

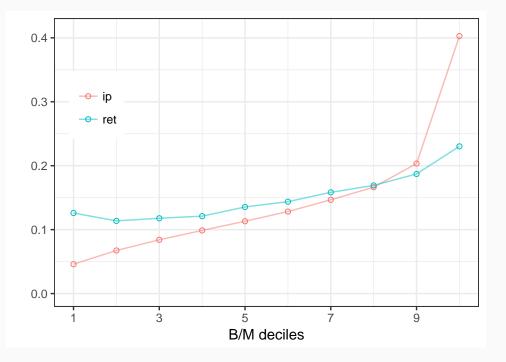
# This paper: measuring firm exposure to investment upends the current literature

- Firms with higher investment opportunities are more exposed to IST
- Firms with low book to market also have lower future investment over market value
- If growth firms (low B/M) have lower returns then the of risk for IST shocks is positive

#### New approach to estimate exposure to IST shock

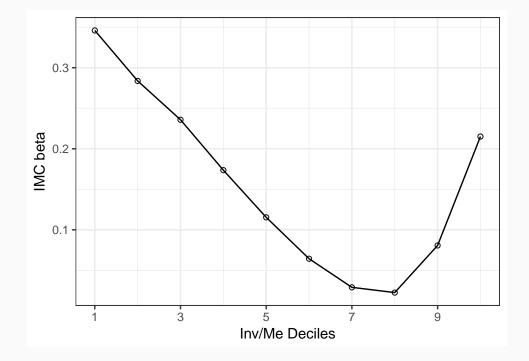
- (Now) standard approach of Kogan & Papanikolaou
  - Based on Berk, Green & Naik or Gomes, Kogan & Zhang.
  - Firms are collection of projects
  - Accumulated projects vs. prospective projects determines the ratio of PVGO to VAP
  - Valuation of each component of the firm determines the value premium
- Kogan & Papanikolaou: PVGOs are more exposed to IST shocks
  - To ground the shock from outside (identification) use ImC portfolio
  - Inv. firms have higher (more positive) IST exposure than Cons. firms
- Garlappi & Song:
  - Use a factor mimicking portfolio to ground the shock
  - Model predicts ratio of PVGO over value is also investment over value

• Kogan & Papanikolaou

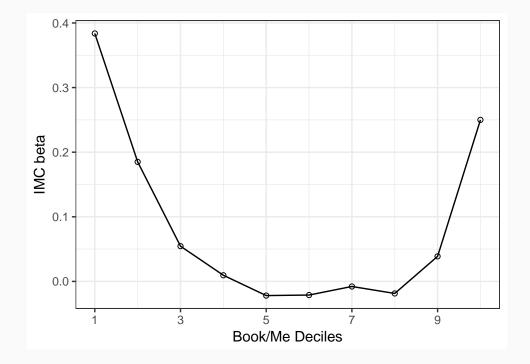

$$\beta_{f,t}^z = \frac{\alpha}{1-\alpha} \beta_{0,t} \cdot \beta_{f,t}^{IMC}$$

• Garlappi & Song

$$\beta_{f,t}^z = \rho^{-1} \cdot \frac{I_{f,t}}{V_{f,t}}$$


• Firms with high exposure to IST shocks have higher investment over market equity ratio

# New testable implications




- Firms with high exposure to IST shocks have higher investment over market equity ratio
- If the investment to market ratio predicts IST beta then the price of risk is positive

## How different is this from IMC Beta



# How different is this from IMC Beta



- IMC beta seems to decline with B/M or I/M ratios
- Negative price of risk

## Can we reconcile the two approaches?

- Opposite predictions on the price of risk for IST shocks
  - so probably not
- But they use the same model...

# Can we make sense of the differences?

**G&S.** IST shocks favors firms with better investment opportunities (high I/V)

- lowers the cost of investment
- increases the NPV of projects
- favors firms with better investment opportunities (more projects)
- firms with relatively lower valuations
- K&P. IST shocks favors firms with few already installed assets
  - PVGO tilted firms benefit a lot relative to VAP tilted firms from IST
  - direct mapping into growth firms have higher loadings than value firms
  - value premium yield negative price of risk

$$\beta_{f,t}^{z} = \frac{\partial V_{f,t}}{\partial z_{t}} = \frac{\alpha}{1-\alpha} \frac{1}{V_{f,t}} \cdot \mathsf{PVGO}_{f,t}$$
$$= \frac{1}{V_{f,t}} \cdot \mathbf{E}_{t} \int_{t}^{\infty} e^{-\eta(s-t)} I_{f,s} ds$$

K&P. Mapping to the data: Book to Market

- Direct evidence of the mechanism: firms with higher M/B respond more to IST shocks
- **G&S.** Mapping to the data: Future investment
  - Under assumption of constant project rate:  $\beta_{f,t}^{z} = \rho^{-1} I_{f,t} / V_{t}$
  - Direct evidence of firms with higher investment to market ratio respond more positively to IST shocks

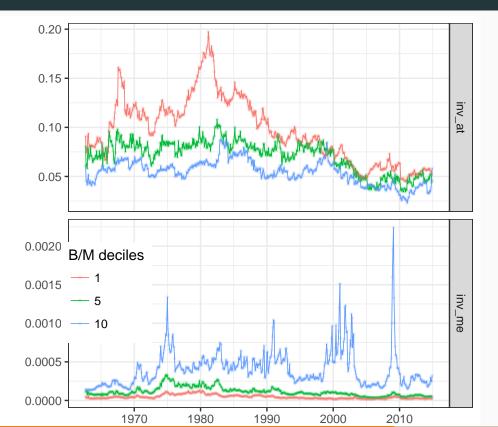
- Under the constant project assumption  $\beta^z$  depends on  $I_t/V_t$
- Investment depends on aggregate but especially on idiosyncratic opportunities  $A(\varepsilon, 1)$ :

$$I_t = \lambda \cdot x_t z_t^{\frac{\alpha}{1-\alpha}} \left( \alpha A(\varepsilon_t, 1) \right)^{\frac{1}{1-\alpha}}$$

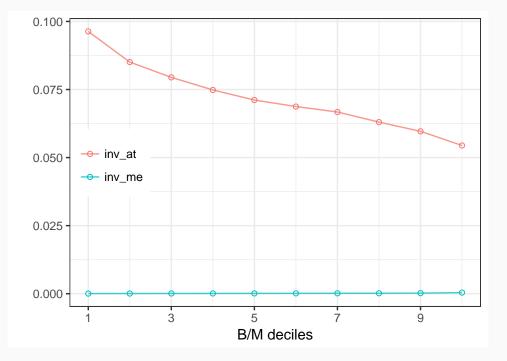
• Is it true that firms with higher productivity (higher  $I_t$ ) also have higher returns?

$$\beta^{z} \propto I_{t} / V_{t}$$
$$I_{t} = \lambda \cdot x_{t} z_{t}^{\frac{\alpha}{1-\alpha}} \left(\alpha A(\varepsilon_{t}, 1)\right)^{\frac{1}{1-\alpha}}$$

- Estimate a translog production function (see Eeckhout & de Loecker)
  - Extract firm level productivity (and idiosyncratic productivity)
- Productivity and returns


| Idiosyncratic productivity quintiles |       | 2     | 3     | 4     | 5     |
|--------------------------------------|-------|-------|-------|-------|-------|
| Idiosyncractic productivity          | 0.87  | 0.97  | 10.1  | 1.05  | 1.24  |
| Productivity                         | 0.97  | 0.99  | 1.03  | 1.09  | 1.39  |
| Inv / Me                             | 0.17  | 0.15  | 0.15  | 0.14  | 0.15  |
| returns                              | 20.48 | 18.24 | 16.37 | 13.45 | 10.19 |

• Productivity across investment to market ratios:


| Inv / Me quintiles              |       | 2     | 3     | 4     | 5     |
|---------------------------------|-------|-------|-------|-------|-------|
| Inv / Me                        | 0.02  | 0.04  | 0.08  | 0.14  | 0.45  |
| firm productivity               | 1.35  | 1.18  | 1.07  | 0.99  | 0.95  |
| idiosyncratic firm productivity | 1.06  | 1.03  | 1.01  | 1.01  | 1.01  |
| returns                         | 14.26 | 14.78 | 15.73 | 16.55 | 17.37 |

• Probably not investment opportunities

#### What drives the differences in firms between the results



#### What drives the differences in firms between the results



|    |      | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   |
|----|------|------|------|------|------|------|------|------|------|------|
|    | 0.59 | 0.17 | 0.05 | 0.02 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 |
| 2  | 0.22 | 0.36 | 0.19 | 0.08 | 0.04 | 0.02 | 0.01 | 0.01 | 0.01 | 0.00 |
| 3  | 0.08 | 0.22 | 0.28 | 0.19 | 0.10 | 0.05 | 0.03 | 0.02 | 0.01 | 0.01 |
| 4  | 0.04 | 0.11 | 0.21 | 0.24 | 0.18 | 0.10 | 0.06 | 0.03 | 0.02 | 0.01 |
| 5  | 0.02 | 0.05 | 0.11 | 0.20 | 0.23 | 0.18 | 0.10 | 0.05 | 0.03 | 0.01 |
| 6  | 0.02 | 0.03 | 0.06 | 0.12 | 0.19 | 0.23 | 0.18 | 0.10 | 0.05 | 0.02 |
| 7  | 0.01 | 0.02 | 0.04 | 0.07 | 0.12 | 0.20 | 0.24 | 0.19 | 0.10 | 0.04 |
| 8  | 0.01 | 0.01 | 0.02 | 0.04 | 0.07 | 0.12 | 0.20 | 0.27 | 0.20 | 0.07 |
| 9  | 0.01 | 0.01 | 0.02 | 0.03 | 0.04 | 0.06 | 0.12 | 0.23 | 0.35 | 0.19 |
| 10 | 0.00 | 0.01 | 0.01 | 0.01 | 0.02 | 0.03 | 0.05 | 0.09 | 0.24 | 0.65 |

• Direct measure of the elasticity

$$\log(I_t/K_t) = |\mathsf{MC}_t + Q(\mathsf{PVGO}) \cdot |\mathsf{MC}_t + \dots$$

| Quintile                 | Interact with I/V | Interact with B/M |
|--------------------------|-------------------|-------------------|
| l (baseline)             | 0.83              | 0.29              |
| 2 (relative to baseline) | -0.29             | 0.09              |
| 3                        | -0.43             | 0.009             |
| 4                        | -0.48             | 0.11              |
| 5                        | -0.73             | 0.20              |

• Direct measure of the elasticity

$$\log(I_t/V_t) = \mathsf{IMC}_t + Q(\mathsf{PVGO}) \cdot \mathsf{IMC}_t + \dots$$

| Quintile                 | Interact with I/V |
|--------------------------|-------------------|
| I (baseline, low I/V)    | 0.44              |
| 2 (relative to baseline) | 0.43              |
| 3                        | 0.76              |
| 4                        | 0.94              |
| 5 (high I/V)             | 0.85              |

Make sure not only driven by impact of imc shock on valuation

- Evidence of direct mechanism driven by investment opportunity set
- My take: markups!
- Make sure cross-section is not entirely drive by movement in valuations