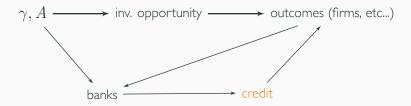
Cyclical Dispersion in Expected Defaults (Gomes, Grotteria & Wachter)

Erik Loualiche (Minnesota)

June 2018, WFA


Research question: what do we mean by Credit Cycles

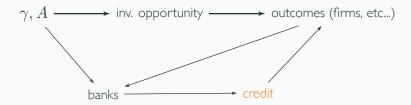
Cost of Investment is High...

- For reasons that reflect fundamental forces in the economy ...
 - Productivity: investment opportunity set is small
 - Discount Rates:lead to low q for a given project
- Credit Markets are distressed
 - Debt is expensive (but raising equity is easy?)
 - There are frictions on debt markets leading to a breakdown of MM

Both sides have distinct empirical implications

Credit as a symptom: the fundamental view

- Credit is a symptom not a root cause: omitted variable bias
 - Only fundamental shocks (productivity/discount rates) drive the business cycle
 - scarce credit is both a consequence of these shocks and one of the mechanisms


This paper

Credit as a root cause: the intermediary view

- Credit is the only observable related to the cause
 - · hard to measure bank distress but it directly affects credit
 - scarce credit is only mechanism through wich aggregate outcomes are affected

This paper

Credit as a symptom: the fundamental view

Credit as a root cause: the intermediary view

This Paper

Main thesis

- Just because credit is a symptom it might not be the cause!
- Occam's razor: simple neoclassical model with minimal assumption rationalizes co-movement in economic activity and credit

Just because something is rationalizable...

• ... does not make it immediately true

How to identify firms with low investment opportunity set.

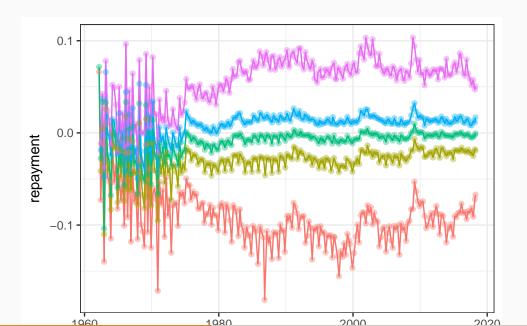
- If they are profitable/healthy:
 - give money back to shareholders/debt holders
 - debt repayment, share repurchase etc...
- What if they are unprofitable?

Data

Main finding

How come measuring investment opportunities stand for credit factors...

- Repayers have higher Expected Default Frequency (EDF)
- Mechanically credit risk is confounded with investment opportunities

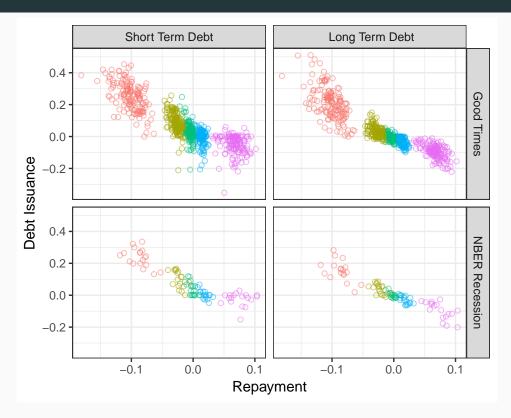

How can this be true within neoclassical model

- Increase in discount rates (disaster risk in the model)
- Firm value decline, moving closer to default
- If discount rate shock also affects investment opportunities
 - Firms with low investment opportunities have low EDF (repay their debt)
 - Firms with constant investment opportunities have higher EDF (stay levered)
- Crucial ingredient:
 - Correlation of discount rate shock and inv. opportunity shock

Empirical insight: debt repayment measure

Repayment

- Are firms net issuers or net repayers
- Quintiles based on repayment rate each period



Portfolio Churn

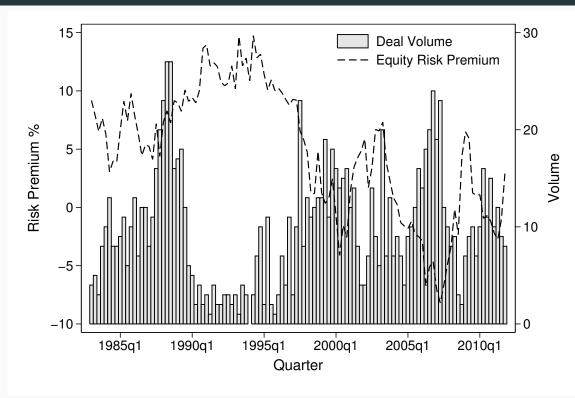
		2	3	4	5
	0.27	0.18	0.13	0.15	0.24
2	0.17	0.25	0.22	0.21	0.16
3	0.12	0.20	0.30	0.25	0.14
4	0.15	0.21	0.23	0.25	0.17
5	0.29	0.16	0.12	0.15	0.29

- Firms repay in one period and then revert back to the mean?
- Investigate the speed of repayment
- What about using share repurchase etc...

Conditional Statistics

How to find further evidence

Discount rate shocks also affect investment opportunities


- Cross-section of firms
 - Different sensitivity to discount rates (firm risk premium)
 - What about investment opportunities conditional on state of the world

How to find further evidence

Discount rate shocks also affect investment opportunities

• Cross-section of firms

M/B	Investment 0.255***	M / B
	(0.009)	
Repayment Quintile		-0.042***
		(0.002)
Repayment Q. × Recession	-0.020**	-0.023***
	(800.0)	(0.006)
$M/B \times Repayment Q. \times Recession$	-0.010*	
	(0.005)	
Observations	384,515	384,515
\mathbb{R}^2	0.702	0.613

Buyout Activity and Discount Rates

- PE Literature: Buyout Waves are driven by mispricing of debt and equity
 - Cheap debt fuels buyout booms
- HLP: Equity returns are better predictors of buyout activity than debt measures
- Private Equity literature attributes to expensive debt, periods of general high discount rates

How to differentiate between debt specific factors causing buyouts or general discount rates?

Variation in exposure ϕ_i

firms with high beta are less likely to be targets in bad times

Variation in investment opportunities: severity of agency

• Free-cash flow problem, governance measure (GIM)

Panel A: Performance Proxies							
	(1)	(2)	(3)	(4)			
Characteristic (X) :	β	\mathbf{GIM}	FCF/Assets	Industry HHI			
$(X)\hat{rp}$	$-0.026* \\ (0.014)$	-0.058** (0.025)	-0.0085 (0.017)	-0.044*** (0.015)			
Time FE	X	X	X	X			
Observations R^2	$\begin{array}{c} 234 \\ 0.015 \end{array}$	$174 \\ 0.030$	$234 \\ 0.001$	$\frac{234}{0.028}$			
Panel B: Illiquidity Proxies							
	(1)	(2)	(3)	(4)			
Characteristic (X):	M&A Vol.	M&A Val.	IPO Vol.	IPO Val.			
$(X)\hat{rp}$	0.060*** (0.014)	0.015 (0.013)	$0.021* \\ (0.013)$	$0.024* \\ (0.013)$			
Time FE	X	X	X	X			
Observations R^2	$\frac{234}{0.085}$	$\frac{234}{0.006}$	$\frac{234}{0.012}$	$234 \\ 0.015$			

Conclusion

- Great paper!
- General framework applies to a large class of investment considerations
 - not only within the firm
- Evidence of direct mechanism driven by investment opportunity set