The Leading Premium Croce, Marchuk & Schlag

Discussion – SFS Cavalcades May 2019

Erik Loualiche

1

Motivation

Leading Indicators

- Large forecasting literature: how do we predict recessions?
- Important for policy analysis

This paper: micro leading (or lagging) indicators

- Different firms or industries carry different information about business cycle
- Leading Industries: higher returns (4%)

Interpretation: timing premium

Quantitative benefit from early resolution of uncertainty: 1.5%

Discussion

What do we learn from identifying leading industries?

- Policy: useful for forecasting?
- Incremental information content of leading industries

Identification

- Are leading industries simply leading because they "cause" the business cycle
- Granger causality from actual causality

Structural Approach

■ Links to existing industry lead-lag asset pricing

Plan

- 1 Constructing leading indicators
- 2 What do we learn from leading indicators
- 3 Identification
- 4 Structural approach

Lead-lag indicator

Correlogram

$$\rho_{t,h}^{i} = \operatorname{corr}\left(\Delta Y_{t}, \Delta \mathsf{CF}_{t-h}^{i}\right)$$

Maximum correlation

 \blacksquare Which time shift h maximizes

$$\arg\max_{h}|\rho_{t,h}^{i}|$$

Reduced form approach

- Why do some firms lead and other lag?
- lacktriangle Take the structure of economy at time t as given

Plan

- 1 Constructing leading indicators
- 2 What do we learn from leading indicators
- 3 Identification
- 4 Structural approach

Leading indicators

- Stock & Watson: leading indicators are a heuristic way of improving forecasting
- Use classic indicators like hours worked, industrial production...

Leading Premium

- Leading firms earn higher average returns
- Why?

Leading Forecast

Prices of leading firms forecast economic activity

$$\Delta g_{t+h} = \gamma_0 + \gamma_h p d_t^{\mathsf{lead}} + \dots$$

■ What does $\gamma_h > 0$ mean?

Leading indicators

- Stock & Watson: leading indicators are a heuristic way of improving forecasting
- Use classic indicators like hours worked, industrial production...

Leading Premium

- Leading firms earn higher average returns
- Why?

Table 1: Lead-Lag Portfolio Sorting (Max Correlation)

			0 (,	
	Lead	Mid	Lag	LL	LL Strong	
Average return	9.43***	6.03**	5.24*	4.20**	5.24***	
	(2.27)	(2.76)	(3.04)	(1.79)	(1.96)	
CAPM α	3.17***	-0.63	-1.79	4.96***	6.12***	
	(1.05)	(0.47)	(1.30)	(1.89)	(1.95)	
FF3 α	3.02***	-0.71	-1.66	4.68**	6.23**	
	(1.16)	(0.54)	(1.43)	(2.08)	(2.49)	

Leading indicators

- Stock & Watson: leading indicators are a heuristic way of improving forecasting
- Use classic indicators like hours worked, industrial production...

Leading Premium

- Leading firms earn higher average returns
- Why?

Leading Forecast

Prices of leading firms forecast economic activity

$$\Delta g_{t+h} = \gamma_0 + \gamma_h p d_t^{\mathsf{lead}} + \dots$$

Table 8: Predictive Properties of Leading Price-Dividend Ratio

Industrial production growth							
	h = 1	h = 2	h = 3	h=4			
Eq. (1)-(3), γ_h	0.023***	0.032***	0.040***	0.046***			
	(0.005)	(0.007)	(0.008)	(0.008)			
Adj. R^2	0.467	0.188	0.040	0.020			
Adj. R^{2*}	0.461	0.176	0.017	-0.013			

■ What does $\gamma_h > 0$ mean?

7

Leading Forecast

Prices of leading firms forecast economic activity

$$\Delta g_{t+h} = \gamma_0 + \gamma_h p d_t^{\mathsf{lead}} + \dots$$

- What does $\gamma_h > 0$ mean?
- Leading premium only captures $|\rho|$ and not the sign
 - ightharpoonup High early absolute correlation ightarrow high expected returns
 - ▶ Low PD ratio → low growth rate unconditionally?
- Look at conditional correlation: non symmetric?
- Use leading portfolio for forecasting?

Plan

- 1 Constructing leading indicators
- 2 What do we learn from leading indicators
- 3 Identification
- 4 Structural approach

Interpretation of Leading Premium

Long run risk economy with news shocks

$$\begin{split} &\Delta c_{t+1} = \mu + x_{t-h_c} + \varepsilon_{t+1}^c \\ &\Delta d_{t+1}^{\mathsf{lead}} = \mu + \phi_x^l x_t + \phi_c^l \varepsilon_{t+1}^c + \varepsilon_{t+1}^l \end{split}$$

- What is x_t ?
- LRR model: hard to detect slow moving component
 - lacktriangledown h_c estimated to be 27 quarters ... contrast with max of 4 quarters in empirical section
- What is the structural parameter ϕ_x^l ?
 - why leading firms load early on x_t
 - Industry composition in lead portfolio varies

How do we find a way out

- Borrow from news shock literature
- Go more structural: estimate factor model

News Shocks

Barsky-Sims approach.

• "Identify the news shock as a structural shock orthogonal to technology innovations that best explains future variation in technology"

Two explanations

- Are leading indicator actually leading indicator: information gets in early in some industries?
- Are leading indicators (industry) technology shocks that have to make their way through the aggregate economy?

A more structural empirical approach

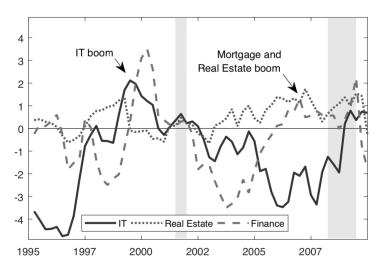
Factor models: Long-Plosser approach

■ Write down a factor model for output growth

$$\Delta c_{t+1} = \Gamma \mathbf{F}_t + \varepsilon_{t+1}$$

■ Different firms/industries have different loadings Λ^i on factors:

$$\Delta d_{t+1}^i = \Lambda^i \mathbf{F}_t + \varepsilon_{t+1}^i = \sum_k \lambda_k^i f_t^k + \varepsilon_{t+1}^i$$

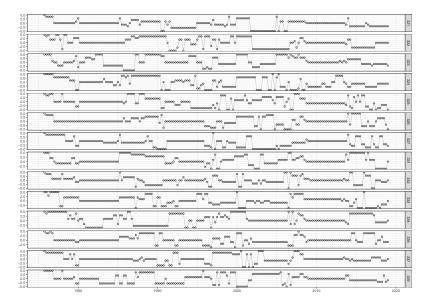

- $lacksquare{\lambda}_k^i$ can represent production network, trade credit etc...

Leading interpretation

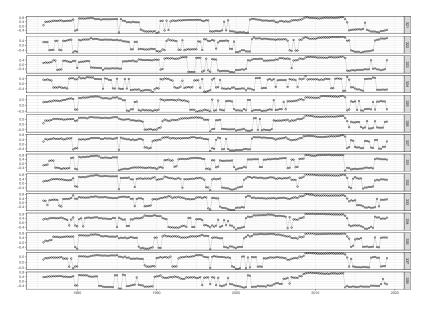
- Shut down all shocks but industry 1
 - ▶ Industry 1 predicts output *early* because it is the dominant factor
- High expected returns because it dominates the economy (Pastor & Veronesi, dominant beta argument)

A more structural empirical approach

■ What do we learn from leading premium? A glimpse at the factor model



A more structural empirical approach


Structural leading interpretation

- What do we learn from leading premium? A glimpse at the factor model
- Hard to estimate in reduced form
 - High dimensionality and parameter stability
- Add some structure: parametric approach

Parameter stability

Parameter stability

Plan

- 1 Constructing leading indicators
- 2 What do we learn from leading indicators
- 3 Identification
- 4 Structural approach

Relation to production based asset pricing

Gofman, Segal & Wu

- Firms at top of the supply chain earn higher average returns
- Do we have evidence that firms at the top of the supply chain are also a leading indicator
- Related to Cohen & Frazzini information percolation result

Departing from endowment economy

■ How do we interpret the results if leading industries can respond?

Final Thoughts

Results

- Great paper!
- Strong empirical fact

Some shortcomings

■ Needs a better structural interpretation