Operating Hedge and Gross Profitability Premium Kogan, Li and Zhang

Discussion - AFA - January 2020

Erik Loualiche – University of Minnesota

Profitability

Profitability

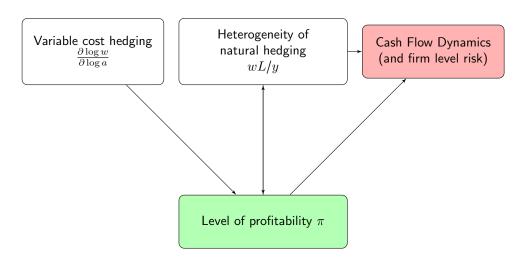
- Profitability premium: firms with high gross profitability have high average stock returns
- Highly profitable firms have higher cash-flow cyclicality

This Paper

Model

Standard Model with Capital and Labor in CES production function

$$\begin{split} y &= a \cdot z \cdot \left(L^{\frac{\eta-1}{\eta}} + K^{\frac{\eta-1}{\eta}}\right)^{\frac{\eta}{\eta-1}} \\ \pi &= y - wL \end{split}$$


Cash-flow cyclicality

■ Heterogeneous exposure to aggregate shocks *X*:

$$\begin{split} \beta_X &= \frac{\partial \log \pi}{\partial \log a} = 1 + \left(1 - \frac{\partial \log w}{\partial \log a}\right) \cdot \frac{wL/y}{1 - wL/y} \\ &= \frac{\partial \log \pi}{\partial \log a} = 1 - \left(\frac{\partial \log w}{\partial \log a} - 1\right) \cdot \underbrace{\frac{y - \pi}{\pi}}_{\text{fraction of costs}} \end{split}$$

■ Firms with a high ratio of variable costs to revenues benefit more from natural hedging through variable costs

How to link Variable Costs Hedging to the Profitability Premium

Measurement

■ Heterogeneous exposure in hedging (β_X) increases with idiosyncratic productivity if:

$$(1 - \eta) \left(\frac{\partial \log w}{\partial \log a} - 1 \right) > 0$$

Indirect evidence

■ Indirect measure confirms the profitability premium:

$$\frac{\partial \log(y/\pi)}{\partial \log a} \propto (1-\eta) \left(\frac{\partial \log w}{\partial \log a} - 1 \right)$$

- If revenues are more cyclical than costs, then variable costs hedging dampens cash-flow cyclicality
- positive profitability premium if high profitable firms have less variable cost hedging

Direct Evidence

- Direct measure of price elasticity: $\partial \log w / \partial \log a > 1$?
- Direct measure of production function: η ?

A few comments on direct measurement

Estimating Price elasticity

$$\frac{\partial \log w}{\partial \log a} - 1 > 0$$

- Some evidence in macroeconomics on the cyclicality of factor prices
- Heterogeneity across industries: wages are sticky, energy and materials are probably more cyclical
- Identifying the elasticity properly would require some exogenous demand or supply shifters

Production function

$$1 - \eta > 0$$

■ In the paper the author regress directly from the F.O.C.

$$\log(wL/K)_{i,t} = \eta \log(\pi/K)_{i,t} + a_t + \varepsilon_{i,t}$$

- Unbiased estimate of η require exogenous variation in the profit rate π/K
- Production function estimation is hard (see IO!)

$$\log Y = \sum_{i} \alpha_i \log L_i$$

Different Approach: models of competition

Profitability premium from the angle of a Melitz model of imperfect competition

- Standard Melitz model: firms face CES demand and fixed operating costs
- lacktriangle Firms face idiosyncratic z and aggregate shocks a

$$\pi(z) = \frac{1}{\sigma - 1} \left(\frac{a}{w}\right)^{\sigma - 1} \left[z^{\sigma - 1} - \underline{z}^{\sigma - 1}\right] \cdot E$$

$$\beta_X = \frac{\partial \log \pi(z)}{\partial \log a} = \left(1 - \frac{\partial \log w}{\partial \log a}\right) \cdot (\sigma - 1) \left(1 + \frac{\underline{z}^{\sigma - 1}}{z^{\sigma - 1} - \underline{z}^{\sigma - 1}}\right)$$

- Profit sensititivity is high for
 - firms with high operating leverage (z is close to the production cutoff \underline{z})
 - firms that have higher labor share (high $\sigma 1$)

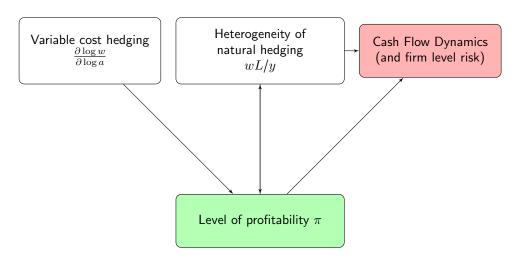
Measurement

- Labor (factor) share literature in macroeconomics
- IO: production function estimation

Different Approach: models of competition

Profitability premium from the angle of variations in markups

- Strength of variable costs hedging comes from cyclicality of wl/y, or w/p (with y = pq)
- Standard model with DRS, $q = al^{\frac{\sigma-1}{\sigma}}$ and time-varying markups $\mu(a) = p(a)/w(a)$.
- Elasticity of profits to aggregate shocks depend on behavior of markups


$$\beta_X = \frac{\partial \log \pi}{\partial \log a} = \frac{\partial \log p}{\partial \log a} + (\sigma - 1) \frac{\partial \log \mu(a)}{\partial \log a} + \sigma$$

- Profit sensititivity is high for
 - firms that have high markup cyclicality (high $\partial \log \mu / \partial \log a$)
 - firms that have higher labor share (high $\sigma 1$)

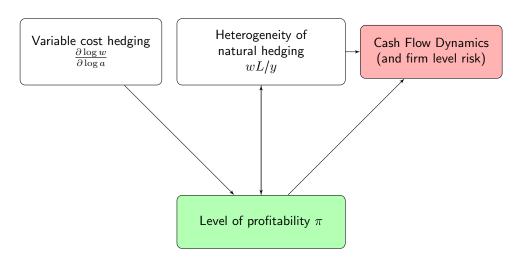
Measurement

- Markup cyclicality
 - Some evidence that industries with high markups have more volatile markups (see Corhay, Kung and Schmid, or Loualiche).

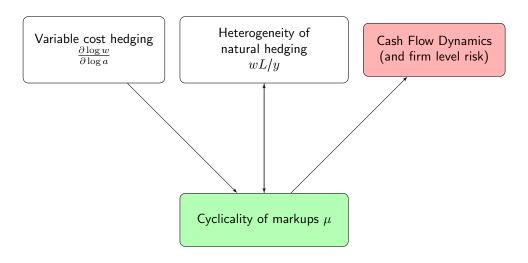
Is the level of profitability the best measure of cost cyclicality?

Cyclicality to the Factor Mimicking Portfolio?

Panel B: Exposure of sales							
K =	Lo	2	3	4	Hi	Hi-Lo	
0	-0.27	1.04	1.23	1.12	1.17	1.45	
	(-0.47)	(1.91)	(2.05)	(2.90)	(2.18)	(2.65)	
1	-1.25	0.56	-0.08	0.62	0.00	1.25	
	(-1.33)	(0.59)	(-0.08)	(0.74)	(0.00)	(1.75)	
2	-1.36	-0.10	-0.50	0.93	-0.28	1.08	
	(-1.20)	(-0.07)	(-0.37)	(0.69)	(-0.28)	(1.37)	


Cyclicality to the Factor Mimicking Portfolio?

	Panel (C: Expos	sures of e	cost of g	goods sold	
K =	Lo	2	3	4	Hi	Hi-Lo
0	0.46	1.66	1.80	1.76	1.38	0.92
	(0.72)	(2.75)	(2.69)	(2.90)	(1.99)	(2.05)
1	-0.13	1.25	0.64	1.08	0.14	0.28
	(-0.15)	(1.30)	(0.64)	(1.34)	(0.13)	(0.33)
2	-0.27	0.31	0.00	1.24	-0.32	-0.05
	(-0.23)	(0.21)	(0.00)	(0.85)	(-0.25)	(-0.06)


Cyclicality to the Factor Mimicking Portfolio?

Panel A: Exposures of gross profits							
K =	Lo	2	3	4	Hi	Hi-Lo	
0	-4.02	-0.49	0.18	0.16	0.87	4.89	
	(-1.97)	(-0.67)	(0.25)	(0.27)	(2.49)	(2.38)	
1	-6.70	-1.11	-1.46	-0.15	-0.13	6.58	
	(-3.20)	(-0.94)	(-1.23)	(-0.14)	(-0.15)	(4.10)	
2	-6.74	-1.05	-1.52	0.43	-0.07	6.67	
	(-3.11)	(-0.88)	(-1.35)	(0.32)	(-0.09)	(3.39)	

Is the level of profitability the best measure of cost cyclicality?

Is the level of profitability the best measure of cost cyclicality?

Final Thoughts

Very interesting Paper!

Take away

- New approach to think about profitability premium
- Matters a lot when we think jointly about the negatively correlated value premium

Great Paper!