Feedback and Contagion Through Distressed Competition Chen, Dou, Guo, and Ji

Discussion - Macro Finance Society Meetings - October 2020

Erik Loualiche - University of Minnesota

l

This Paper

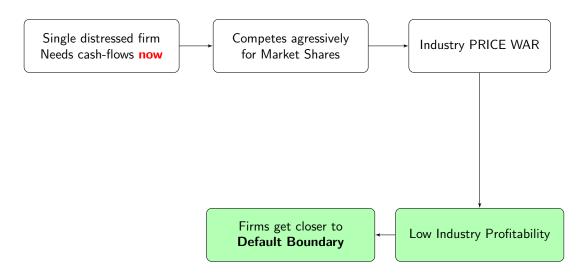
Cutting-edge of macro-finance

- Sophisticated model of firm interaction
 - Dynamic game of competition (Bertrand)
 - Endogenous Collusion
- Model of firm capital structure
 - Leland with jump risk.

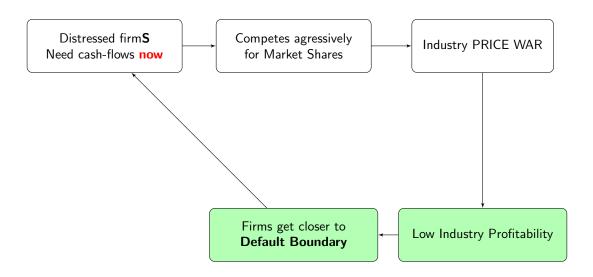
Quantitative Predictions

- Industry sensitivity to discount rates
- Distress Anomaly
- Understand how firm capital structure ripples through the pricing decisions of an industry

This Discussion

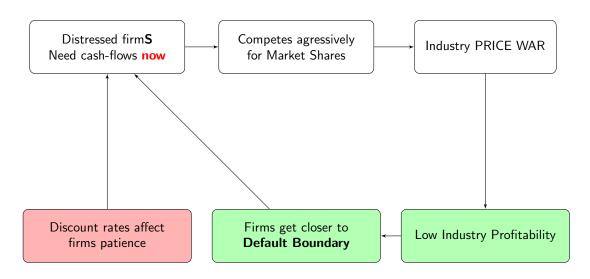

A lot to cover ...

- Present framework and insist on key mechanism:
 - why do firms collude?
 - why do they stop?
- Predictions:
 - ▶ How does collusion interact with firm capital structure?
 - ... and vice-versa (feedback/contagion effects)
- Some perspectives on recent trends in product market structure


Plan

1 Framework: Collusion in a Model of Capital Structure

Why distress risk matters for competition



Why distress risk matters for competition

5

Why distress risk matters for competition

A Framework for Competition with Capital Structure

Competition

- Two firms facing isoelastic demand curve, and **fixed** marginal costs
- Taste shocks (customer base) shift relative demand curves of competing firms
 - Aggregate risk and Jump risk which drives most of the variation in cash-flows
- Firms choose *collusion strategy* or *competitive strategy*
 - trade-off short term market shares for long-term profit margins
- Other stuff
 - Entry threat

Capital Structure

- Choose debt level at t = 0 (issues of stationarity?)
- Given initial debt level variation in profits drive how close firms are to their default boundary

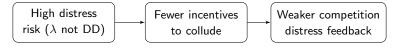
Collusion

How to Sustain Collusion

■ Isoelastic demand determines market shares:

$$\frac{C_i}{C} = \frac{M_i}{M} \cdot \left(\frac{P_i}{P}\right)^{-\eta}$$

- \blacksquare Peaceful equilibrium (for firms): collude maximize joint profit by sustaining high prices P_i and P_j
- ${\Bbb Z}$ Competitive equilibrium: lower your price to *steal* market shares: $\downarrow P_i$, $\uparrow C_i$ and higher revenues in the short run (before the other firm responds): $\uparrow P_i C_i$
- Relation to the default boundary
 - ▶ Far from boundary: trade-off leans towards sustaining long-term gains and firms collude
 - Close to boundary: strong incentives to deviate, firms chose short-term gains and compete


7

Distress Loops

The threat of non-collusion on (asset) prices

- After a bad taste shock $\downarrow M_i$, firms lower their profit margins: some competition
- This brings firms closer to their default boundary
- Second round effects on profit margins: distress feedback loop

The role of discount rates

- High discount rates: tilt the trade-off towards short-term gains and the competition equilibrium
- Only matters if firms do actually collude
- Discount rates do not matter when distress feedback channel is not operative

Collusion

Test of theory across all industries

- Could benefit from narrower focus on the empirical side
- Which industries do collude? Where do we have tangible evidence of firms not competing on prices?
- Large literature in IO studies implicit collusion
 - Hard to disentangle collusion (and high prices) from demand growth/capacity constraints/product differentiation
 - Some recent work on IO focuses on specific industries: airlines, hospitals, beverage, retail gas industry

What shapes collusion?

- Collusion is easier with large entry barriers, few competitors, price transparency
- More relevant factors here are: discount rates, market growth
 - ▶ Some of these elements correlate with capital structure
 - ▶ Importance of understanding the source of collusion for each industry

Trends in Antitrust Enforcement

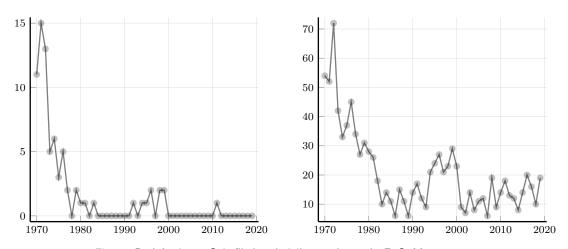


Figure: DoJ Antitrust Suit filed and civil cases brougth; F. S. Morton.

Trends in Profit Margins

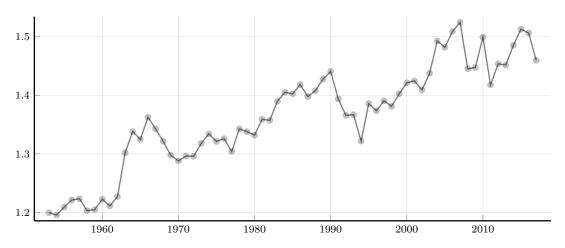


Figure: Rise of markups. De Loecker, Eeckhout, and Unger

Trends in Product Market Structures

Do we have similar trends in capital structure?

- Is financial distress anomaly more prevalent in the 2000s?
- Is the link between capital structure and product markets closer in the 2000s?

Some Evidence of Mechanisms

- Table 5: Tail risk in equity returns correlates with lower profit margins, higher distress and credit spreads
- Table 7/B: Industries closer to default have their profit margins covary more negatively with discount rates: short-run market shares effect
- Table 8: Market contagion effect

Magnitudes

■ What is a reasonable "change in collusion" in response to a firm moving closer to distress

Some Evidence of Mechanisms

- Table 5: Tail risk in equity returns correlates with lower profit margins, higher distress and credit spreads
- Table 7/B: Industries closer to default have their profit margins covary more negatively with discount rates: short-run market shares effect
- Table 8: Market contagion effect

Magnitudes

■ What is a reasonable "change in collusion" in response to a firm moving closer to distress

Table 5: Left-tail idiosyncratic jump risk, profit margin, and financial distress.

	(1)	(2)	(3)	(4)	(5)	(6)
	$\ln(1 + PM_{i,t})$		$Distress_{i,t}$		Credit_spread _{i,t}	
 IdTail_risk _{i,t}	-1.870***	-2.725***	0.044***	0.053***	0.914***	1.172***
	[-7.70]	[-8.51]	[9.25]	[7.82]	[6.23]	[8.35]
Year FE	No	Yes	No	Yes	No	Yes

Some Evidence of Mechanisms

- Table 5: Tail risk in equity returns correlates with lower profit margins, higher distress and credit spreads
- Table 7/B: Industries closer to default have their profit margins covary more negatively with discount rates: short-run market shares effect
- Table 8: Market contagion effect

Magnitudes

What is a reasonable "change in collusion" in response to a firm moving closer to distress

Table 8: Financial contagion effect on profit margins within an industry

	Table 6.	Tillalicial	omagic	лі епесі (ni pront in	argins with	imi an n	idusti y.	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
					ln(1 + P)	$^{\prime}M_{i,t}^{(L)})$			
		Sorted	on marke	et share dis	persion	9	Sorted on	entry threa	at
$IdShock_{i,t}^{(H)}$	All	T1	T2	T3	T3-T1	T1	T2	T3	T3-T1
		(balance)		(imbalanc	e)	(low)		(high)	
M1	0.023***	0.051***	0.011	0.019	-0.033**	0.055***	0.007	0.019*	-0.036**
	[2.98]	[5.30]	[0.74]	[1.34]	[-2.09]	[3.14]	[0.90]	[1.67]	[-2.17]
M2	0.027***	0.060***	0.009	0.023	-0.037*	0.067***	0.014	0.009	-0.058***

13

Some Evidence of Mechanisms

- Table 5: Tail risk in equity returns correlates with lower profit margins, higher distress and credit spreads
- Table 7/B: Industries closer to default have their profit margins covary more negatively with discount rates: short-run market shares effect
- Table 8: Market contagion effect

Magnitudes

■ What is a reasonable "change in collusion" in response to a firm moving closer to distress

Table 7: Implications of the competition-distress feedback effect on profit margins.

	(1)	(2)	(3)	(4)		
		$\Delta \ln(1 -$	$+ PM_{k,t})$			
	All firms in	the industry	Top six firms i	Top six firms in the industry		
$DD_{i,t}$	T3-T1	Q5-Q1	T3-T1	Q5-Q1		
$\Delta Discount_rate_t$	0.212**	0.369**	0.214*	0.356*		
	[1.97]	[1.97]	[1.72]	[1.85]		

Some Evidence of Mechanisms

- Table 5: Tail risk in equity returns correlates with lower profit margins, higher distress and credit spreads
- Table 7/B: Industries closer to default have their profit margins covary more negatively with discount rates: short-run market shares effect
- Table 8: Market contagion effect

Magnitudes

■ What is a reasonable "change in collusion" in response to a firm moving closer to distress

Timing

- Frequency of firm cooperation (collusion) is likely to be lower than financial markets
- Show more than just the contemporaneous relation between real side and financial markets: persistent effects
- If taste shocks/customer base are indeed what drives demand, evidence suggests this is very sticky: low volatility in spreads?

Some Identification

Using large tariff changes

- Table 12: Triple difference of Δ -product market (tariff change), hi-lo distress, Δ -discount rate on profit margins
 - ▶ look at a few specific industries rather than regression (hard when we split data too much)
- Table 13: with cross price margins, effects are too small. Look directly at spreads?

Some Identification

Using large tariff changes

- Table 12: Triple difference of Δ -product market (tariff change), hi-lo distress, Δ -discount rate on profit margins
 - blook at a few specific industries rather than regression (hard when we split data too much)
- Table 13: with cross price margins, effects are too small. Look directly at spreads?

Table 12: Impact of market structure changes on the competition-distress feedback.

	(1)	(2)	(3)	(4)
_	$\Delta \ln(1 + PM_{i,t})$		$\Delta PM_{i,t}$	
$Mkt_chg_{i,t} \times Low_DD_{i,t-1} \times \Delta Discount_rate_t$		1.57** [2.59]		1.40** [2.53]
$Low_DD_{i,t-1} \times \Delta Discount_rate_t$	-0.47^{**} [-2.08]	-0.79 [-1.56]	-0.36* [-1.82]	-0.61 [-1.42]
$Mkt_chg_{i,t} \times \Delta Discount_rate_t$		0.39** [2.20]		0.39** [2.24]
$\Delta Discount_rate_t$	-0.25** [-3.51]	-0.35** [-2.03]	-0.24*** [-3.56]	-0.34** [-2.11]
$Mkt_chg_{i,t} \times Low_DD_{i,t-1}$		0.02 [1.18]		0.01 [1.12]
$Low_DD_{i,t-1}$	-0.02^{***} [-4.02]	-0.02** [-2.69]	-0.01^{***} [-4.03]	-0.02^{***} [-2.79]
3.61 ()		0.00		0.00

Some Identification

Using large tariff changes

- Table 12: Triple difference of Δ -product market (tariff change), hi-lo distress, Δ -discount rate on profit margins
 - look at a few specific industries rather than regression (hard when we split data too much)
- Table 13: with cross price margins, effects are too small. Look directly at spreads?

Table 13: Impact of market structure changes on the financial contagion effect.

	(1)	(2)	(3)	(4)
		ln(1 +	$PM_{i,t}^{(L)}$)	
		M1	N	1 2
$Mkt_chg_{i,t} \times IdShock_{i,t}^{(H)}$		-0.04** [-2.39]		-0.04** [-2.20]
$IdShock_{i,t}^{(H)}$	0.02*** [2.62]	0.02* [1.98]	0.03*** [2.78]	0.03** [2.47]
$Mkt_chg_{i,t}$		0.00 [-1.37]		-0.01 [-0.62]
$IdShock_{i,t}^{(L)}$	0.07*** [4.92]	0.08*** [4.09]	0.06*** [3.53]	0.07*** [3.23]
$\ln(1 + PM_{i,t-1}^{(L)})$	0.29*** [4.95]	0.24*** [7.10]	0.29*** [4.92]	0.24*** [7.21]

Other Comments

Model?

- Most elements of the production function are fixed
 - What about the cyclicality in cash-flows solely driven by taste shocks
 - What about equilibrium effects: if discount rates trigger default, how do we things of earnings price ratio as a measure of discount rates
- What about aggregate demand? Wages?

On the empirical side

- Show evidence of credit spreads responding
- Are tariffs really affecting collusion equilibrium: examples would be nice!
- Estimating contagion: dealing with the reflection problem

Common Ownership

...

Final Thoughts

Very interesting Paper!

Take away

- Tight link between capital structure and dynamic of product market structure
- Empirical evidence of distress anomaly is related to product markets

Great Paper!