Innovation, Industry Equilibrium, and Discount Rates Maria Cecilia Bustamante and Francesca Zucchi

Discussion - FIRS - June 2022

Erik Loualiche – University of Minnesota, Carlson School of Management

l

This Paper

Link between innovation and discount rates

- Insight of industry equilibrium
- Standard q-theory view of innovation
 - lacktriangledown High discount rates ightarrow low investment or innovation
- Equilibrium thinking
 - ▶ High discount rates discourage entry and foster breakthrough innovation
 - Example: infant-industry protectionism

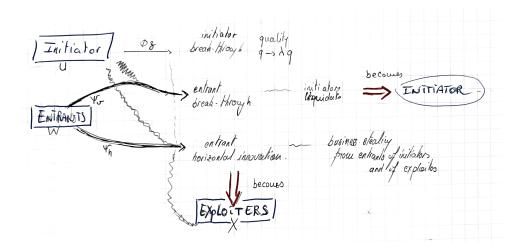
In the background

- Linear quadratic model of innovation with type transition
- Two types of innovation
 - exploitative (horizontal or tinkering): pure business-stealing effect
 - break-through (vertical): creates a new industry, knowledge spillovers

This Discussion

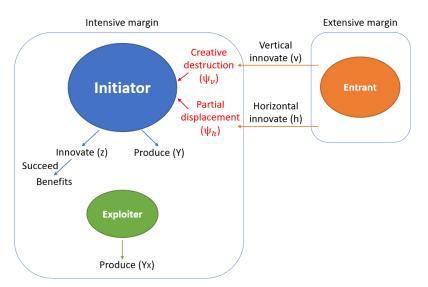
A lot to cover ...

- The mechanics of the model
 - ▶ quite involved: 2 types of innovation, 3 types of firms, transition dynamics...
- Quantitative content of the model
- Empirical content of the model


Plan

1 Model mechanics

2 Comments on the theory


3 Empirical opportunities

The Model

The Model (HT Yao Deng)

The Model

Protagonists

Two types of innovation

- **Tinkering** (Horizontal Innovation): new products which take market shares from incumbents
 - Decreasing returns-to-scale; Business-stealing spillovers
- **Breakthrough** (*Vertical innovation*): new product line which makes old products obsolete but opens the industry to tinkering
 - ▶ Knowledge spillovers as other firms build on product line; reset tinkering level

Three types of firms

- Entrants
 - Can do either horizontal (breakthrough) or vertical innovation
 - Displace initiator (if breakthrough) or steal market shares from exploiters/initiator
- Initiator
 - ▶ Former entrant who "broke-through"; exploits the product line
 - ▶ Initiators still innovate but only seek breakthrough (vertical innovation)
- Exploiter
 - Only horizontal innovation

Action

Firm type dynamics akin to a labor search model

- Interesting transition dynamics between types
- Incentives of three types of firms shape the type and the dynamics of innovation

Many interesting predictions from dynamics

- High discount rates discourage entry and innovation for all actors
- Fewer entrants means incumbents are protected (e.g. see the work on infant industries)
- Vertical innovation is more profitable (protected) while horizontal innovation returns go down
- Summary: high discount rates \rightarrow less entry \rightarrow industry competition \downarrow \rightarrow returns to incumbent (vertical-)innovation is high!

В

Action

A lot more stuff...

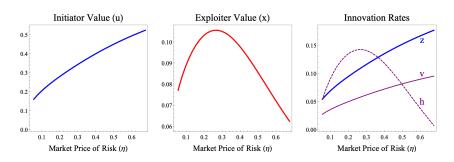
- Model easier to approach from perspective of textbook DMP model
- Search models are used to explain employment dynamics, volatility, job to job transition, skill premia, etc.
- What would be the counterparts here
 - ▶ worker skill ↔ type of innovator
 - ▶ jobs transition ↔ firm innovation cycle (from vertical to horizontal)
 - ▶ wage volatility ↔ price volatility (Shimer puzzle)
 - ▶ wage premium ↔ price difference
 - etc.
- All these links can be useful to think about how to approach the model predictions

Plan

1 Model mechanics

2 Comments on the theory

3 Empirical opportunities


Are the dynamics realistic?

Main results: comparative statics on the risk premium

 What about taking these numbers seriously; e.g. take initiators' return in an industry for calibration

$$R_{\text{initiator},j} = \rho \sigma \eta_j \frac{y_j}{u_j} + \dots$$

- Industries with low risk-premium (low exposure to aggregate risk or low expected returns)
- lots of entrants, more exploiter, little vertical innovation?

Are the dynamics realistic?

Main results: comparative statics on the risk premium

 What about taking these numbers seriously; e.g. take initiators' return in an industry for calibration

$$R_{\text{initiator},j} = \rho \sigma \eta_j \frac{y_j}{u_j} + \dots$$

- Industries with low risk-premium (low exposure to aggregate risk or low expected returns)
- lots of entrants, more exploiter, little vertical innovation?
- Model makes surprising and very interesting predictions (refinement of q-theory)
- Important to present some direct evidence of the mechanism at play

Other comments

Main results: comparative statics on the risk premium

- Model is in partial equilibrium (it is in the title!)
- Innovation itself affects discount rates (Pastor and Veronesi)
- Interesting to flag the general equilibrium implications given that different types of innovation have different effects
 - horizontal innovation lowers risk premium (cash-flows are more stable)
 - vertical innovation could increase risk premium as industry becomes more dominant (P-V)

Plan

1 Model mechanics

2 Comments on the theory

3 Empirical opportunities

Empirical relevance

Distinguish the type of innovation

- How does the risk premium change the quality of innovation
- Hard to interpret periods of high breakthrough innovation with asset prices (see Haddad, Ho, and Loualiche, JFE)
- Regress spillovers on discount rates (controlling for quality)

Some empirical explorations

	Ма	rket-based Spill	overs	Outcome Spillovers			
	Jaffe (1)	Mahalanobis (2)	IV Jaffe (3)	Jaffe (4)	Mahalanobis (5)	IV Jaffe (6)	
Bubble x Spill-SIC	0.152*** (0.027)	0.200*** (0.037)	0.178*** (0.038)	0.004 (0.009)	-0.000 (0.013)	0.007*** (0.002)	
Spill-SIC	-0.088*** (0.016)	-0.103*** (0.033)	-0.314*** (0.104)	-0.021*** (0.006)	-0.021** (0.010)	-0.044 (0.046)	
Spill-Tech	0.405^{***} (0.145)	0.844^{***} (0.174)	1.214*** (0.171)	0.175^{***} (0.025)	0.159*** (0.040)	0.188** (0.074)	
Fixed Effects	Y, F	Y, F	Y, F	Y, F	Y, F	Y, F	
Observations \mathbb{R}^2	8,896 0.74	8,946 0.74	8,896 0.74	8,775 0.99	8,825 0.99	8,775 0.99	

Some empirical explorations

	Market-based Spillovers			Outcome Spillovers		
	Jaffe (1)	Mahalanobis (2)	IV Jaffe (3)	Jaffe (4)	Mahalanobis (5)	IV Jaffe (6)
Risk Premium x Spill-SIC	-0.397*** (0.118)	-0.607*** (0.186)	-0.425*** (0.119)	0.129*** (0.044)	0.008 (0.068)	0.146** [*] (0.050)
Spill-SIC	-0.095*** (0.025)	-0.105* (0.062)	-0.193** (0.090)	-0.022*** (0.008)	-0.026^* (0.015)	0.112** (0.047)
${\sf Risk\ Premium\ x\ Spill-Tech}$	-1.026*** (0.185)	-1.087*** (0.250)	-0.969*** (0.239)	-0.245*** (0.087)	0.052 (0.098)	-0.088* (0.039)
Spill-Tech	0.658*** (0.125)	0.818*** (0.143)	0.960*** (0.093)	0.612*** (0.038)	0.712*** (0.056)	0.607** [*] (0.048)
Fixed Effects	Y, F	Y, F	Y, F	Y, F	Y, F	Y, F
Observations \mathbb{R}^2	10,159 0.72	10,226 0.72	10,159 0.72	10,153 0.99	10,236 0.99	10,153 0.99

Final Thoughts

Very interesting Paper!

Take away

- Dynamic models of innovation
- Very rich: two types of innovation, three types of agents (search model structure)
- \blacksquare ... subtle effect of risk on the incentives to innovate and the type of innovation